Feeding value of the starch concentrate of dehulled faba bean (Vicia faba L.) for broilers and swine

Olukosi, O. A. and J. G. M. Houdijk
Monogastric Science Research Centre, SRUC, Edinburgh, EH9 3JG

Leading the way in Agriculture and Rural Research, Education and Consulting
The humble bean...for starters
Beyond the beans...

Air fractionation separates ground bean into protein-rich and starch-rich fractions.

www.beans4feeds.net
Chemical compositions, %

<table>
<thead>
<tr>
<th></th>
<th>Faba bean</th>
<th>Starch concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross energy, MJ/kg</td>
<td>18.7</td>
<td>16.6</td>
</tr>
<tr>
<td>Crude protein</td>
<td>29.0</td>
<td>16.8</td>
</tr>
<tr>
<td>Starch</td>
<td>44.7</td>
<td>48.9</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.76</td>
<td>1.12</td>
</tr>
<tr>
<td>Arginine</td>
<td>2.30</td>
<td>1.67</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>Methionine + Cystine</td>
<td>0.54</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Potential source of protein and amino acids for poultry and swine

www.beans4feeds.net
Experiment 1

Amino acid digestibility for bean starch concentrate for broilers

www.beans4feeds.net
Apparent amino acid digestibility (AIAAD)

AIAAD, %

Apparent digestibility for essential amino acids ranged from 68 to 90%
Standardised amino acid digestibility (SIAAD)

Standardised digestibility for essential amino acids ranged from 70 to 91%

www.beans4feeds.net
Amino acid digestibility compared

Except for Met, AA digestibility is comparable to other important cereal grains and soybean meal.

BSC – bean starch concentrate; SBM – soybean meal; www.beans4feeds.net
Digestible amino acid compared

Methionine will be a limitation in BSC

BSC – bean starch concentrate; SBM – soybean meal; www.beans4feeds.net
Experiment 2

Metabolisable energy

www.beans4feeds.net
<table>
<thead>
<tr>
<th>Predicted ME, MJ/kg</th>
<th>Actual ME, MJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.40</td>
<td>13.41</td>
</tr>
</tbody>
</table>

www.beans4feeds.net
Metabolisable energy content of BSC is comparable to maize and higher than wheat

BSC – bean starch concentrate; www.beans4feeds.net
Experiment 3

Amino acids digestibility for swine

www.beans4feeds.net
Objective

• To establish feeding value of BSC for growing and finishing pigs
 – Standardised ileal digestibility of amino acids (SID AA)

• To consider to what extent soya bean meal can be replaced with BSC on the basis of feeding value

BSC – bean starch concentrate

www.beans4feeds.net
Apparent N digestibility

Ileal and total tract N digestibility about 79%

Ileal and faecal digestibility comparison.

www.beans4feeds.net
Ileal amino acids digestibility

Amino acid digestibility – generally > 80%

www.beans4feeds.net
Experiments 4 & 5

Growth performance for growing and finishing pigs
<table>
<thead>
<tr>
<th></th>
<th>Grower</th>
<th>Finisher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SBM</td>
<td>BSC</td>
</tr>
<tr>
<td>SBM</td>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>BSC</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Wheat</td>
<td>283</td>
<td>116</td>
</tr>
<tr>
<td>Soya oil</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Barley</td>
<td>284</td>
<td>284</td>
</tr>
<tr>
<td>Molasses</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>RSM</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Wheat feed</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.40</td>
<td>1.00</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.06</td>
<td>0.72</td>
</tr>
<tr>
<td>Threonine</td>
<td>0.00</td>
<td>0.82</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>DCP</td>
<td>5.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Limestone</td>
<td>11.6</td>
<td>12.9</td>
</tr>
<tr>
<td>Salt</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Premix</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Pigs, housing and diets

• Seventy-two grower and finisher pigs
 – Growers initial BW: 30.0±0.74 kg
 – Finishers initial BW: 63.1±0.95 kg

• Six test diets
 – 0, 6, 12, 18, 24 and 30% BSC

• Gradually and completely replacing SBM
• Gradual reduction in wheat by ~65% (from ~27 to 10%)
Growers: daily weight gain

Statistics

Diet: P=0.864
Linear: P=0.734
Quadratic: P=0.613

No significant effect on weight gain

www.beans4feeds.net
Growers: FCR

Statistics
- Diet: $P = 0.679$
- Linear: $P = 0.821$
- Quadratic: $P = 0.976$

No significant effect on FCR
Finishers: daily weight gain

Statistics
- Diet: P=0.026
- Linear: P=0.114
- Quadratic: P=0.011

Quadratic effect of BSC inclusion on weight gain after 6% inclusion

Complete replacement of SBM did not reduce weight gain
Finishers: FCR

Quadratic effect of BSC inclusion on FCR after 6% inclusion

Complete replacement of SBM had no negative effect on FCR

Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet</td>
<td>0.080</td>
</tr>
<tr>
<td>Linear</td>
<td>0.673</td>
</tr>
<tr>
<td>Quadratic</td>
<td>0.039</td>
</tr>
</tbody>
</table>

www.beans4feeds.net
Broiler chickens studies

- Bean starch concentrate can compete with wheat or maize as source of amino acids in broilers
- Met is a limiting amino acid in bean starch concentrate
- Bean starch concentrate is a viable energy and protein feedstuff for broilers

www.beans4feeds.net
Pigs studies

- Gradual exchange of SBM/wheat for BSC resulted in similar growth responses in grower pigs but unexpected quadratic responses in finisher pigs
 - detrimental response over 12, 18 and 24%
 - similar between 0 and 30% BSC in absence of SBM

- Similar conclusion for replacing SBM with whole peas or faba beans (Smith et al., 2013)
Can BSC reduce reliance on SBM?

<table>
<thead>
<tr>
<th></th>
<th>SID Lys (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bean starch concentrate</td>
<td>9.2</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>26.6</td>
</tr>
</tbody>
</table>

- Complete replacement
 - ~3 units of BSC for each unit of SBM

- Grower-finisher diets with an average of 10% SBM can be replaced with 30% BSC
 - Additional AA to balance protein quality
 - From other feedstuffs or pure AA

www.beans4feeds.net
This research is part of “Development of protein-rich and starch-rich fractions from faba beans for salmon and terrestrial animal production respectively” (ref 101096) funded by Innovate UK
Leading the way in Agriculture and Rural Research, Education and Consulting